Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in Populus grandidentata (Bigtooth Aspen).

Identifieur interne : 000636 ( Main/Exploration ); précédent : 000635; suivant : 000637

Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in Populus grandidentata (Bigtooth Aspen).

Auteurs : Eiko E. Kuramae [Pays-Bas] ; Marcio F A. Leite [Pays-Bas] ; Afnan K A. Suleiman [Pays-Bas] ; Christopher M. Gough [États-Unis] ; Buck T. Castillo [États-Unis] ; Lewis Faller [États-Unis] ; Rima B. Franklin [États-Unis] ; John Syring [États-Unis]

Source :

RBID : pubmed:31143163

Abstract

Few studies have investigated bacterial community succession and the role of bacterial decomposition over a continuum of wood decay. Here, we identified how (i) the diversity and abundance of bacteria changed along a chronosequence of decay in Populus grandidentata (bigtooth aspen); (ii) bacterial community succession was dependent on the physical and chemical characteristics of the wood; (iii) interspecific bacterial interactions may mediate community structure. Four hundred and fifty-nine taxa were identified through Illumina sequencing of 16S rRNA amplicons from samples taken along a continuum of decay, representing standing dead trees, downed wood, and soil. Community diversity increased as decomposition progressed, peaking in the most decomposed trees. While a small proportion of taxa displayed a significant pattern in regards to decay status of the host log, many bacterial taxa followed a stochastic distribution. Changes in the water availability and chemical composition of standing dead and downed trees and soil were strongly coupled with shifts in bacterial communities. Nitrogen was a major driver of succession and nitrogen-fixing taxa of the order Rhizobiales were abundant early in decomposition. Recently downed logs shared 65% of their bacterial abundance with the microbiomes of standing dead trees while only sharing 16% with soil. As decay proceeds, bacterial communities appear to respond less to shifting resource availability and more to interspecific bacterial interactions - we report an increase in both the proportion (+9.3%) and the intensity (+62.3%) of interspecific interactions in later stages of decomposition, suggesting the emergence of a more complex community structure as wood decay progresses.

DOI: 10.3389/fmicb.2019.00979
PubMed: 31143163
PubMed Central: PMC6520631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in
<i>Populus grandidentata</i>
(Bigtooth Aspen).</title>
<author>
<name sortKey="Kuramae, Eiko E" sort="Kuramae, Eiko E" uniqKey="Kuramae E" first="Eiko E" last="Kuramae">Eiko E. Kuramae</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leite, Marcio F A" sort="Leite, Marcio F A" uniqKey="Leite M" first="Marcio F A" last="Leite">Marcio F A. Leite</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suleiman, Afnan K A" sort="Suleiman, Afnan K A" uniqKey="Suleiman A" first="Afnan K A" last="Suleiman">Afnan K A. Suleiman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gough, Christopher M" sort="Gough, Christopher M" uniqKey="Gough C" first="Christopher M" last="Gough">Christopher M. Gough</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Virginia Commonwealth University, Richmond, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Castillo, Buck T" sort="Castillo, Buck T" uniqKey="Castillo B" first="Buck T" last="Castillo">Buck T. Castillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faller, Lewis" sort="Faller, Lewis" uniqKey="Faller L" first="Lewis" last="Faller">Lewis Faller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Linfield College, McMinnville, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Franklin, Rima B" sort="Franklin, Rima B" uniqKey="Franklin R" first="Rima B" last="Franklin">Rima B. Franklin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Virginia Commonwealth University, Richmond, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Syring, John" sort="Syring, John" uniqKey="Syring J" first="John" last="Syring">John Syring</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Linfield College, McMinnville, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31143163</idno>
<idno type="pmid">31143163</idno>
<idno type="doi">10.3389/fmicb.2019.00979</idno>
<idno type="pmc">PMC6520631</idno>
<idno type="wicri:Area/Main/Corpus">000871</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000871</idno>
<idno type="wicri:Area/Main/Curation">000871</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000871</idno>
<idno type="wicri:Area/Main/Exploration">000871</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in
<i>Populus grandidentata</i>
(Bigtooth Aspen).</title>
<author>
<name sortKey="Kuramae, Eiko E" sort="Kuramae, Eiko E" uniqKey="Kuramae E" first="Eiko E" last="Kuramae">Eiko E. Kuramae</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leite, Marcio F A" sort="Leite, Marcio F A" uniqKey="Leite M" first="Marcio F A" last="Leite">Marcio F A. Leite</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suleiman, Afnan K A" sort="Suleiman, Afnan K A" uniqKey="Suleiman A" first="Afnan K A" last="Suleiman">Afnan K A. Suleiman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gough, Christopher M" sort="Gough, Christopher M" uniqKey="Gough C" first="Christopher M" last="Gough">Christopher M. Gough</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Virginia Commonwealth University, Richmond, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Castillo, Buck T" sort="Castillo, Buck T" uniqKey="Castillo B" first="Buck T" last="Castillo">Buck T. Castillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faller, Lewis" sort="Faller, Lewis" uniqKey="Faller L" first="Lewis" last="Faller">Lewis Faller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Linfield College, McMinnville, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Franklin, Rima B" sort="Franklin, Rima B" uniqKey="Franklin R" first="Rima B" last="Franklin">Rima B. Franklin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Virginia Commonwealth University, Richmond, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Syring, John" sort="Syring, John" uniqKey="Syring J" first="John" last="Syring">John Syring</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Linfield College, McMinnville, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Few studies have investigated bacterial community succession and the role of bacterial decomposition over a continuum of wood decay. Here, we identified how (i) the diversity and abundance of bacteria changed along a chronosequence of decay in
<i>Populus grandidentata</i>
(bigtooth aspen); (ii) bacterial community succession was dependent on the physical and chemical characteristics of the wood; (iii) interspecific bacterial interactions may mediate community structure. Four hundred and fifty-nine taxa were identified through Illumina sequencing of
<i>16S rRNA</i>
amplicons from samples taken along a continuum of decay, representing standing dead trees, downed wood, and soil. Community diversity increased as decomposition progressed, peaking in the most decomposed trees. While a small proportion of taxa displayed a significant pattern in regards to decay status of the host log, many bacterial taxa followed a stochastic distribution. Changes in the water availability and chemical composition of standing dead and downed trees and soil were strongly coupled with shifts in bacterial communities. Nitrogen was a major driver of succession and nitrogen-fixing taxa of the order Rhizobiales were abundant early in decomposition. Recently downed logs shared 65% of their bacterial abundance with the microbiomes of standing dead trees while only sharing 16% with soil. As decay proceeds, bacterial communities appear to respond less to shifting resource availability and more to interspecific bacterial interactions - we report an increase in both the proportion (+9.3%) and the intensity (+62.3%) of interspecific interactions in later stages of decomposition, suggesting the emergence of a more complex community structure as wood decay progresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31143163</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in
<i>Populus grandidentata</i>
(Bigtooth Aspen).</ArticleTitle>
<Pagination>
<MedlinePgn>979</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2019.00979</ELocationID>
<Abstract>
<AbstractText>Few studies have investigated bacterial community succession and the role of bacterial decomposition over a continuum of wood decay. Here, we identified how (i) the diversity and abundance of bacteria changed along a chronosequence of decay in
<i>Populus grandidentata</i>
(bigtooth aspen); (ii) bacterial community succession was dependent on the physical and chemical characteristics of the wood; (iii) interspecific bacterial interactions may mediate community structure. Four hundred and fifty-nine taxa were identified through Illumina sequencing of
<i>16S rRNA</i>
amplicons from samples taken along a continuum of decay, representing standing dead trees, downed wood, and soil. Community diversity increased as decomposition progressed, peaking in the most decomposed trees. While a small proportion of taxa displayed a significant pattern in regards to decay status of the host log, many bacterial taxa followed a stochastic distribution. Changes in the water availability and chemical composition of standing dead and downed trees and soil were strongly coupled with shifts in bacterial communities. Nitrogen was a major driver of succession and nitrogen-fixing taxa of the order Rhizobiales were abundant early in decomposition. Recently downed logs shared 65% of their bacterial abundance with the microbiomes of standing dead trees while only sharing 16% with soil. As decay proceeds, bacterial communities appear to respond less to shifting resource availability and more to interspecific bacterial interactions - we report an increase in both the proportion (+9.3%) and the intensity (+62.3%) of interspecific interactions in later stages of decomposition, suggesting the emergence of a more complex community structure as wood decay progresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuramae</LastName>
<ForeName>Eiko E</ForeName>
<Initials>EE</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leite</LastName>
<ForeName>Marcio F A</ForeName>
<Initials>MFA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suleiman</LastName>
<ForeName>Afnan K A</ForeName>
<Initials>AKA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gough</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castillo</LastName>
<ForeName>Buck T</ForeName>
<Initials>BT</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faller</LastName>
<ForeName>Lewis</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Franklin</LastName>
<ForeName>Rima B</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Syring</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Linfield College, McMinnville, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">16S rRNA</Keyword>
<Keyword MajorTopicYN="N">facilitation</Keyword>
<Keyword MajorTopicYN="N">interspecific interaction</Keyword>
<Keyword MajorTopicYN="N">microbial community ecology</Keyword>
<Keyword MajorTopicYN="N">wood decomposition</Keyword>
<Keyword MajorTopicYN="N">wood microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31143163</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2019.00979</ArticleId>
<ArticleId IdType="pmc">PMC6520631</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2002 Nov;44(4):306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jun 15;22(12):1540-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jul;88(7):1611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biom J. 2008 Jun;50(3):346-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2010 May;56(5):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20555400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23461709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2012 Jul 12;1(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Sep;15(9):2395-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):996-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 05;9(2):e88141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24505405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2014 Aug;68(2):212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24623527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 03;10(4):e1003531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Legal Med. 2015 May;129(3):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25431049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1326-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Dec;30(12):766-779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26519235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(2):429-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26918765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 01;7:231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Jul;92(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27127195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 31;7:744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2017 Mar 1;41(2):109-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
<li>Oregon</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Kuramae, Eiko E" sort="Kuramae, Eiko E" uniqKey="Kuramae E" first="Eiko E" last="Kuramae">Eiko E. Kuramae</name>
</noRegion>
<name sortKey="Leite, Marcio F A" sort="Leite, Marcio F A" uniqKey="Leite M" first="Marcio F A" last="Leite">Marcio F A. Leite</name>
<name sortKey="Suleiman, Afnan K A" sort="Suleiman, Afnan K A" uniqKey="Suleiman A" first="Afnan K A" last="Suleiman">Afnan K A. Suleiman</name>
</country>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Gough, Christopher M" sort="Gough, Christopher M" uniqKey="Gough C" first="Christopher M" last="Gough">Christopher M. Gough</name>
</region>
<name sortKey="Castillo, Buck T" sort="Castillo, Buck T" uniqKey="Castillo B" first="Buck T" last="Castillo">Buck T. Castillo</name>
<name sortKey="Faller, Lewis" sort="Faller, Lewis" uniqKey="Faller L" first="Lewis" last="Faller">Lewis Faller</name>
<name sortKey="Franklin, Rima B" sort="Franklin, Rima B" uniqKey="Franklin R" first="Rima B" last="Franklin">Rima B. Franklin</name>
<name sortKey="Syring, John" sort="Syring, John" uniqKey="Syring J" first="John" last="Syring">John Syring</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000636 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000636 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31143163
   |texte=   Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in Populus grandidentata (Bigtooth Aspen).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31143163" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020